如果你看到这篇文章,那么我真的非常开心,这说明第一章节的内容你都跟下来了,并且对于课后的思考题也有研究,在这我要手动给你点个赞。繁忙的工作中,还能为自己持续充电,保持终身学习的心态,我想我们一定是同路人。
那么到今天为止,我们已经学习了 17 个案例,解决的问题也不算少了,不知道你的感受如何?收获如何呢?
我还记得开篇词的留言区中有位很有趣的同学,他说:“作为一线 bug 制造者,希望能少写点 bug。” 感同身受,和 Spring 斗智斗勇的这些年,我也经常为一些问题而抓狂过,因不能及时解决而焦虑过,但最终还是觉得蛮有趣的,这个专栏也算是沉淀之作,希望能给你带来一些实际的帮助。
最初,我其实是想每节课都和你交流下上节课的思考题,但又担心大家的学习进度不一样,所以就有了这次的集中答疑,我把我的答案给到大家,你也可以对照着去看一看,也许有更好的方法,欢迎你来贡献“选项”,我们一起交流。希望大家都能在问题的解决中获得一些正向反馈,完成学习闭环。
第 1 课
在案例 2 中,显示定义构造器,这会发生根据构造器参数寻找对应 Bean 的行为。这里请你思考一个问题,假设寻找不到对应的 Bean,一定会如案例 2 那样直接报错么?
实际上,答案是否定的。这里我们不妨修改下案例 2 的代码,修改后如下:
@Service
public class ServiceImpl {
private List<String> serviceNames;
public ServiceImpl(List<String> serviceNames){
this.serviceNames = serviceNames;
System.out.println(this.serviceNames);
}
}
参考上述代码,我们的构造器参数由普通的 String 改成了一个 List,最终运行程序会发现这并不会报错,而是输出 []。
要了解这个现象,我们可以直接定位构建构造器调用参数的代码所在地(即 ConstructorResolver#resolveAutowiredArgument):
@Nullable
protected Object resolveAutowiredArgument(MethodParameter param, String beanName,
@Nullable Set<String> autowiredBeanNames, TypeConverter typeConverter, boolean fallback) {
//省略非关键代码
try {
//根据构造器参数寻找 bean
return this.beanFactory.resolveDependency(
new DependencyDescriptor(param, true), beanName, autowiredBeanNames, typeConverter);
}
catch (NoUniqueBeanDefinitionException ex) {
throw ex;
}
catch (NoSuchBeanDefinitionException ex) {
//找不到 “bean” 进行fallback
if (fallback) {
// Single constructor or factory method -> let's return an empty array/collection
// for e.g. a vararg or a non-null List/Set/Map parameter.
if (paramType.isArray()) {
return Array.newInstance(paramType.getComponentType(), 0);
}
else if (CollectionFactory.isApproximableCollectionType(paramType)) {
return CollectionFactory.createCollection(paramType, 0);
}
else if (CollectionFactory.isApproximableMapType(paramType)) {
return CollectionFactory.createMap(paramType, 0);
}
}
throw ex;
}
}
当构建集合类型的参数实例寻找不到合适的 Bean 时,并不是不管不顾地直接报错,而是会尝试进行 fallback。对于本案例而言,会使用下面的语句来创建一个空的集合作为构造器参数传递进去:
CollectionFactory.createCollection(paramType, 0);
上述代码最终调用代码如下:
return new ArrayList<>(capacity);
所以很明显,最终修改后的案例并不会报错,而是把 serviceNames 设置为一个空的 List。从这一点也可知,自动装配远比想象的要复杂。
第 2 课
我们知道了通过 @Qualifier 可以引用想匹配的 Bean,也可以直接命名属性的名称为 Bean 的名称来引用,这两种方式如下:
//方式1:属性命名为要装配的bean名称
@Autowired
DataService oracleDataService;
//方式2:使用@Qualifier直接引用
@Autowired
@Qualifier("oracleDataService")
DataService dataService;
那么对于案例 3 的内部类引用,你觉得可以使用第 1 种方式做到么?例如使用如下代码:
@Autowired
DataService studentController.InnerClassDataService;
实际上,如果你动动手或者我们稍微敏锐点就会发现,代码本身就不能编译,因为中间含有“.”。那么还有办法能通过这种方式引用到内部类么?
查看决策谁优先的源码,最终使用属性名来匹配的执行情况可参考 DefaultListableBeanFactory#matchesBeanName 方法的调试视图:
我们可以看到实现的关键其实是下面这行语句:
candidateName.equals(beanName) || ObjectUtils.containsElement(getAliases(beanName), candidateName))
很明显,我们的 Bean 没有被赋予别名,而鉴于属性名不可能含有“.”,所以它不可能匹配上带“.”的 Bean 名(即 studentController.InnerClassDataService)。
综上,如果一个内部类,没有显式指定名称或者别名,试图使用属性名和 Bean 名称一致来引用到对应的 Bean 是行不通的。
第 3 课
在案例 2 中,我们初次运行程序获取的结果如下:
[Student(id=1, name=xie), Student(id=2, name=fang)]
那么如何做到让学生 2 优先输出呢?
实际上,在案例 2 中,我们收集的目标类型是 List,而 List 是可排序的,那么到底是如何排序的?在案例 2 的解析中,我们给出了 DefaultListableBeanFactory#resolveMultipleBeans 方法的代码,不过省略了一些非关键的代码,这其中就包括了排序工作,代码如下:
if (result instanceof List) {
Comparator<Object> comparator = adaptDependencyComparator(matchingBeans);
if (comparator != null) {
((List<?>) result).sort(comparator);
}
}
而针对本案例最终排序执行的是 OrderComparator#doCompare 方法,关键代码如下:
private int doCompare(@Nullable Object o1, @Nullable Object o2, @Nullable OrderSourceProvider sourceProvider) {
boolean p1 = (o1 instanceof PriorityOrdered);
boolean p2 = (o2 instanceof PriorityOrdered);
if (p1 && !p2) {
return -1;
}
else if (p2 && !p1) {
return 1;
}
int i1 = getOrder(o1, sourceProvider);
int i2 = getOrder(o2, sourceProvider);
return Integer.compare(i1, i2);
}
其中 getOrder 的执行,获取到的 order 值(相当于优先级)是通过 AnnotationAwareOrderComparator#findOrder 来获取的:
protected Integer findOrder(Object obj) {
Integer order = super.findOrder(obj);
if (order != null) {
return order;
}
return findOrderFromAnnotation(obj);
}
不难看出,获取 order 值包含了 2 种方式:
- 从 @Order 获取值,参考 AnnotationAwareOrderComparator#findOrderFromAnnotation:
@Nullable
private Integer findOrderFromAnnotation(Object obj) {
AnnotatedElement element = (obj instanceof AnnotatedElement ? (AnnotatedElement) obj : obj.getClass());
MergedAnnotations annotations = MergedAnnotations.from(element, SearchStrategy.TYPE_HIERARCHY);
Integer order = OrderUtils.getOrderFromAnnotations(element, annotations);
if (order == null && obj instanceof DecoratingProxy) {
return findOrderFromAnnotation(((DecoratingProxy) obj).getDecoratedClass());
}
return order;
}
- 从 Ordered 接口实现方法获取值,参考 OrderComparator#findOrder:
protected Integer findOrder(Object obj) {
return (obj instanceof Ordered ? ((Ordered) obj).getOrder() : null);
}
通过上面的分析,如果我们不能改变类继承关系(例如让 Student 实现 Ordered 接口),则可以通过使用 @Order 来调整顺序,具体修改代码如下:
@Bean
@Order(2)
public Student student1(){
return createStudent(1, "xie");
}
@Bean
@Order(1)
public Student student2(){
return createStudent(2, "fang");
}
现在,我们就可以把原先的 Bean 输出顺序颠倒过来了,示例如下:
Student(id=2, name=fang)],[Student(id=1, name=xie)
第 4 课
案例 2 中的类 LightService,当我们不在 Configuration 注解类中使用 Bean 方法将其注入 Spring 容器,而是坚持使用 @Service 将其自动注入到容器,同时实现 Closeable 接口,代码如下:
import org.springframework.stereotype.Component;
import java.io.Closeable;
@Service
public class LightService implements Closeable {
public void close() {
System.out.println("turn off all lights);
}
//省略非关键代码
}
接口方法 close() 也会在 Spring 容器被销毁的时候自动执行么?
答案是肯定的,通过案例 2 的分析,你可以知道,当 LightService 是一个实现了 Closable 接口的单例 Bean 时,会有一个 DisposableBeanAdapter 被添加进去。
而具体到执行哪一种方法?shutdown()?close()? 在代码中你能够找到答案,在 DisposableBeanAdapter 类的 inferDestroyMethodIfNecessary 中,我们可以看到有两种情况会获取到当前 Bean 类中的 close()。
第一种情况,就是我们这节课提到的当使用 @Bean 且使用默认的 destroyMethod 属性(INFER_METHOD);第二种情况,是判断当前类是否实现了 AutoCloseable 接口,如果实现了,那么一定会获取此类的 close()。
private String inferDestroyMethodIfNecessary(Object bean, RootBeanDefinition beanDefinition) {
String destroyMethodName = beanDefinition.getDestroyMethodName();
if (AbstractBeanDefinition.INFER_METHOD.equals(destroyMethodName) ||(destroyMethodName == null && bean instanceof AutoCloseable)) {
if (!(bean instanceof DisposableBean)) {
try {
return bean.getClass().getMethod(CLOSE_METHOD_NAME).getName();
}
catch (NoSuchMethodException ex) {
try {
return bean.getClass().getMethod(SHUTDOWN_METHOD_NAME).getName();
}
catch (NoSuchMethodException ex2) {
// no candidate destroy method found
}
}
}
return null;
}
return (StringUtils.hasLength(destroyMethodName) ? destroyMethodName : null);
}
到这,相信你应该可以结合 Closable 接口和 @Service(或其他 @Component)让关闭方法得到执行了。
第 5 课
案例 2 中,我们提到了通过反射来实例化类的三种方式:
-
java.lang.Class.newInstance()
-
java.lang.reflect.Constructor.newInstance()
-
sun.reflect.ReflectionFactory.newConstructorForSerialization().newInstance()
其中第三种方式不会初始化类属性,你能够写一个例子来证明这一点吗?
能证明的例子,代码示例如下:
import sun.reflect.ReflectionFactory;
import java.lang.reflect.Constructor;
public class TestNewInstanceStyle {
public static class TestObject{
public String name = "fujian";
}
public static void main(String[] args) throws Exception {
//ReflectionFactory.newConstructorForSerialization()方式
ReflectionFactory reflectionFactory = ReflectionFactory.getReflectionFactory();
Constructor constructor = reflectionFactory.newConstructorForSerialization(TestObject.class, Object.class.getDeclaredConstructor());
constructor.setAccessible(true);
TestObject testObject1 = (TestObject) constructor.newInstance();
System.out.println(testObject1.name);
//普通方式
TestObject testObject2 = new TestObject();
System.out.println(testObject2.name);
}
}
运行结果如下:
null
fujian
第 6 课
实际上,审阅这节课两个案例的修正方案,你会发现它们虽然改动很小,但是都还不够优美。那么有没有稍微优美点的替代方案呢?如果有,你知道背后的原理及关键源码吗?顺便你也可以想想,我为什么没有用更优美的方案呢?
我们可以将“未达到执行顺序预期”的增强方法移动到一个独立的切面类,而不同的切面类可以使用 @Order 进行修饰。@Order 的 value 值越低,则执行优先级越高。以案例 2 为例,可以修改如下:
@Aspect
@Service
@Order(1)
public class AopConfig1 {
@Before("execution(* com.spring.puzzle.class6.example2.ElectricService.charge()) ")
public void validateAuthority(JoinPoint pjp) throws Throwable {
throw new RuntimeException("authority check failed");
}
}
@Aspect
@Service
@Order(2)
public class AopConfig2 {
@Before("execution(* com.spring.puzzle.class6.example2.ElectricService.charge())")
public void logBeforeMethod(JoinPoint pjp) throws Throwable {
System.out.println("step into ->"+pjp.getSignature());
}
}
上述修改的核心就是将原来的 AOP 配置,切成两个类进行,并分别使用 @Order 标记下优先级。这样修改后,当授权失败了,则不会打印“step into ->”相关日志。
为什么这样是可行的呢?这还得回溯到案例 1,当时我们提出这样一个结论:AbstractAdvisorAutoProxyCreator 执行 findEligibleAdvisors(代码如下)寻找匹配的 Advisors 时,最终返回的 Advisors 顺序是由两点来决定的:candidateAdvisors 的顺序和 sortAdvisors 执行的排序。
protected List<Advisor> findEligibleAdvisors(Class<?> beanClass, String beanName) {
List<Advisor> candidateAdvisors = findCandidateAdvisors();
List<Advisor> eligibleAdvisors = findAdvisorsThatCanApply(candidateAdvisors, beanClass, beanName);
extendAdvisors(eligibleAdvisors);
if (!eligibleAdvisors.isEmpty()) {
eligibleAdvisors = sortAdvisors(eligibleAdvisors);
}
return eligibleAdvisors;
}
当时影响我们案例出错的关键点都是在 candidateAdvisors 的顺序上,所以我们重点介绍了它。而对于 sortAdvisors 执行的排序并没有多少涉及,这里我可以再重点介绍下。
在实现上,sortAdvisors 的执行最终调用的是比较器 AnnotationAwareOrderComparator 类的 compare(),它调用了 getOrder() 的返回值作为排序依据:
public int compare(@Nullable Object o1, @Nullable Object o2) {
return doCompare(o1, o2, null);
}
private int doCompare(@Nullable Object o1, @Nullable Object o2, @Nullable OrderSourceProvider sourceProvider) {
boolean p1 = (o1 instanceof PriorityOrdered);
boolean p2 = (o2 instanceof PriorityOrdered);
if (p1 && !p2) {
return -1;
}
else if (p2 && !p1) {
return 1;
}
int i1 = getOrder(o1, sourceProvider);
int i2 = getOrder(o2, sourceProvider);
return Integer.compare(i1, i2);
}
继续跟踪 getOrder() 的执行细节,我们会发现对于我们的案例,这个方法会找出配置切面的 Bean 的 Order 值。这里可以参考 BeanFactoryAspectInstanceFactory#getOrder 的调试视图验证这个结论:
上述截图中,aopConfig2 即是我们配置切面的 Bean 的名称。这里再顺带提供出调用栈的截图,以便你做进一步研究:
现在我们就知道了,将不同的增强方法放置到不同的切面配置类中,使用不同的 Order 值来修饰是可以影响顺序的。相反,如果都是在一个配置类中,自然不会影响顺序,所以这也是当初我的方案中没有重点介绍 sortAdvisors 方法的原因,毕竟当时我们给出的案例都只有一个 AOP 配置类。
第 7 课
在案例 3 中,我们提到默认的事件执行是在同一个线程中执行的,即事件发布者使用的线程。参考如下日志佐证这个结论:
2021-03-09 09:10:33.052 INFO 18104 — [nio-8080-exec-1] c.s.p.listener.HelloWorldController : start to publish event
2021-03-09 09:10:33.055 INFO 18104 — [nio-8080-exec-1] c.s.p.l.example3.MyFirstEventListener : com.spring.puzzle.class7.example3.MyFirstEventListener@18faf0 received: com.spring.puzzle.class7.example3.MyEvent[source=df42b08f-8ee2-44df-a957-d8464ff50c88]
通过日志可以看出,事件的发布和执行使用的都是 nio-8080-exec-1 线程,但是在事件比较多时,我们往往希望事件执行得更快些,或者希望事件的执行可以异步化以不影响主线程。此时应该如何做呢?
针对上述问题中的需求,我们只需要对于事件的执行引入线程池即可。我们先来看下 Spring 对这点的支持。实际上,在案例 3 的解析中,我们已贴出了以下代码片段(位于 SimpleApplicationEventMulticaster#multicastEvent 方法中):
//省略其他非关键代码
//获取 executor
Executor executor = getTaskExecutor();
for (ApplicationListener> listener : getApplicationListeners(event, type)) {
//如果存在 executor,则提交到 executor 中去执行
if (executor != null) {
executor.execute(() -> invokeListener(listener, event));
}
//省略其他非关键代码
对于事件的处理,可以绑定一个 Executor 去执行,那么如何绑定?其实与这节课讲过的绑定 ErrorHandler 的方法是类似的。绑定代码示例如下:
//注意下面的语句只能执行一次,以避免重复创建线程池
ExecutorService newCachedThreadPool = Executors.newCachedThreadPool();
//省略非关键代码
SimpleApplicationEventMulticaster simpleApplicationEventMulticaster = applicationContext.getBean(APPLICATION_EVENT_MULTICASTER_BEAN_NAME, SimpleApplicationEventMulticaster.class);
simpleApplicationEventMulticaster.setTaskExecutor(newCachedThreadPool );
取出 SimpleApplicationEventMulticaster,然后直接调用相关 set() 设置线程池就可以了。按这种方式修改后的程序,事件处理的日志如下:
2021-03-09 09:25:09.917 INFO 16548 — [nio-8080-exec-1] c.s.p.c.HelloWorldController : start to publish event
2021-03-09 09:25:09.920 INFO 16548 — [pool-1-thread-3] c.s.p.l.example3.MyFirstEventListener : com.spring.puzzle.class7.example3.MyFirstEventListener@511056 received: com.spring.puzzle.class7.example3.MyEvent[source=cbb97bcc-b834-485c-980e-2e20de56c7e0]
可以看出,事件的发布和处理分属不同的线程了,分别为 nio-8080-exec-1 和 pool-1-thread-3,满足了我们的需求。
留言