Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

Example 1:
file
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.

Example 2:
file
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.

Example 3:
Input: root = [2,1], p = 2, q = 1
Output: 2

Constraints:

  • The number of nodes in the tree is in the range [2, 105].
  • -10^9 <= Node.val <= 10^9
  • All Node.val are unique.
  • p != q
  • p and q will exist in the BST.

Solution in python:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        def traverse(root):
            if root == None:
                return 
            else:
                if root.left != None:
                    adic[root.left.val] = root
                    traverse(root.left)
                if root.right != None:
                    adic[root.right.val] = root
                    traverse(root.right)
        adic = {root.val:root}
        traverse(root)
        alist = [p.val]
        while p != root:
            alist.append(p.val)
            p = adic[p.val]
        alist.append(root.val)
        while q.val not in alist:
            q = adic[q.val]
        return q
最后修改日期: 2021年1月21日

留言

撰写回覆或留言

发布留言必须填写的电子邮件地址不会公开。