Given a rows x cols matrix mat, where mat[i][j] is either 0 or 1, return the number of special positions in mat.
A position (i,j) is called special if mat[i][j] == 1 and all other elements in row i and column j are 0 (rows and columns are 0-indexed).
Example 1:
Input:
mat =
[[1,0,0],
[0,0,1],
[1,0,0]]
Output: 1
Explanation: (1,2) is a special position because mat[1][2] == 1 and all other elements in row 1 and column 2 are 0.
Example 2:
Input:
mat =
[[1,0,0],
[0,1,0],
[0,0,1]]
Output: 3
Explanation: (0,0), (1,1) and (2,2) are special positions.
Example 3:
Input:
mat =
[[0,0,0,1],
[1,0,0,0],
[0,1,1,0],
[0,0,0,0]]
Output: 2
Example 4:
Input:
mat =
[[0,0,0,0,0],
[1,0,0,0,0],
[0,1,0,0,0],
[0,0,1,0,0],
[0,0,0,1,1]]
Output: 3
Constraints:
- rows == mat.length
- cols == mat[i].length
- 1 <= rows, cols <= 100
- mat[i][j] is 0 or 1.
Solution in python:
class Solution:
def numSpecial(self, mat: List[List[int]]) -> int:
temp = []
count = 0
for i in range(len(mat)):
if sum(mat[i]) == 1:
temp.append(i)
for i in temp:
for j in range(len(mat[0])):
if mat[i][j] == 1:
flag = 1
for k in range(0, i):
if mat[k][j] != 0:
flag = 0
break
if flag:
for k in range(i+1, len(mat)):
if mat[k][j] != 0:
flag = 0
break
if flag:
count += 1
return count
留言