Given a 2D grid of size m x n and an integer k. You need to shift the grid k times.
In one shift operation:
- Element at grid[i][j] moves to grid[i][j + 1].
- Element at grid[i][n – 1] moves to grid[i + 1][0].
- Element at grid[m – 1][n – 1] moves to grid[0][0].
Return the 2D grid after applying shift operation k times.
Example 1:
Input: grid = [[1,2,3],[4,5,6],[7,8,9]], k = 1
Output: [[9,1,2],[3,4,5],[6,7,8]]
Example 2:
Input: grid = [[3,8,1,9],[19,7,2,5],[4,6,11,10],[12,0,21,13]], k = 4
Output: [[12,0,21,13],[3,8,1,9],[19,7,2,5],[4,6,11,10]]
Example 3:
Input: grid = [[1,2,3],[4,5,6],[7,8,9]], k = 9
Output: [[1,2,3],[4,5,6],[7,8,9]]
Constraints:
- m == grid.length
- n == grid[i].length
- 1 <= m <= 50
- 1 <= n <= 50
- -1000 <= grid[i][j] <= 1000
- 0 <= k <= 100
Solution in python:
class Solution:
def shiftGrid(self, grid: List[List[int]], k: int) -> List[List[int]]:
length = len(grid)
width = len(grid[0])
newlist = [[None for i in range(width)] for j in range(length)]
for i in range(length):
for j in range(width):
newlist[(i+(j+k)//width)%length][(j+k)%width] = grid[i][j]
return newlist
留言