Given a 2D grid of size m x n and an integer k. You need to shift the grid k times.

In one shift operation:

  • Element at grid[i][j] moves to grid[i][j + 1].
  • Element at grid[i][n – 1] moves to grid[i + 1][0].
  • Element at grid[m – 1][n – 1] moves to grid[0][0].

Return the 2D grid after applying shift operation k times.

Example 1:

Input: grid = [[1,2,3],[4,5,6],[7,8,9]], k = 1
Output: [[9,1,2],[3,4,5],[6,7,8]]

Example 2:

Input: grid = [[3,8,1,9],[19,7,2,5],[4,6,11,10],[12,0,21,13]], k = 4
Output: [[12,0,21,13],[3,8,1,9],[19,7,2,5],[4,6,11,10]]

Example 3:
Input: grid = [[1,2,3],[4,5,6],[7,8,9]], k = 9
Output: [[1,2,3],[4,5,6],[7,8,9]]

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m <= 50
  • 1 <= n <= 50
  • -1000 <= grid[i][j] <= 1000
  • 0 <= k <= 100

Solution in python:

class Solution:
    def shiftGrid(self, grid: List[List[int]], k: int) -> List[List[int]]:
        length = len(grid)
        width = len(grid[0])
        newlist = [[None for i in range(width)] for j in range(length)]
        for i in range(length):
            for j in range(width):
                newlist[(i+(j+k)//width)%length][(j+k)%width] = grid[i][j]
        return newlist
最后修改日期: 2021年3月8日

留言

撰写回覆或留言

发布留言必须填写的电子邮件地址不会公开。