Given an array nums containing n distinct numbers in the range [0, n], return the only number in the range that is missing from the array.

Follow up: Could you implement a solution using only O(1) extra space complexity and O(n) runtime complexity?

Example 1:
Input: nums = [3,0,1]
Output: 2
Explanation: n = 3 since there are 3 numbers, so all numbers are in the range [0,3]. 2 is the missing number in the range since it does not appear in nums.

Example 2:
Input: nums = [0,1]
Output: 2
Explanation: n = 2 since there are 2 numbers, so all numbers are in the range [0,2]. 2 is the missing number in the range since it does not appear in nums.

Example 3:
Input: nums = [9,6,4,2,3,5,7,0,1]
Output: 8
Explanation: n = 9 since there are 9 numbers, so all numbers are in the range [0,9]. 8 is the missing number in the range since it does not appear in nums.

Example 4:
Input: nums = [0]
Output: 1
Explanation: n = 1 since there is 1 number, so all numbers are in the range [0,1]. 1 is the missing number in the range since it does not appear in nums.

Constraints:

  • n == nums.length
  • 1 <= n <= 10^4
  • 0 <= nums[i] <= n
  • All the numbers of nums are unique.

Solution in python:

class Solution:
    def missingNumber(self, nums: List[int]) -> int:
        n = len(nums)
        return (1+n)*n//2 - sum(nums) 
最后修改日期: 2021年1月24日

留言

撰写回覆或留言

发布留言必须填写的电子邮件地址不会公开。