在上一讲中,我们已经学习了正则中和一些元字符相关的内容。这一节我们讲一下正则中的三种模式,贪婪匹配、非贪婪匹配和独占模式。

这些模式会改变正则中量词的匹配行为,比如匹配一到多次;在匹配的时候,匹配长度是尽可能长还是要尽可能短呢?如果不知道贪婪和非贪婪匹配模式,我们写的正则很可能是错误的,这样匹配就达不到期望的效果了。

为什么会有贪婪与非贪婪模式?

由于本节内容和量词相关的元字符密切相关,所以我们先来回顾一下正则中表示量词的元字符。

img

在这 6 种元字符中,我们可以用 {m,n} 来表示 (*)(+)(?) 这 3 种元字符:

img

表示量词的星号(*)和 加号(+)可能没你想象的那么简单,我用一个例子给你讲解一下。我们先看一下加号(+),使用 a+ 在 aaabb 中查找,可以看到只有一个输出结果:

img

对应的 Python 代码如下:

>>> import re
>>> re.findall(r'a+', 'aaabb')
['aaa']

加号应该很容易理解,我们再使用 a* 在 aaabb 这个字符串中进行查找,这次我们看到可以找到 4 个匹配结果。

img

使用 Python 示例如下,我们可以看到输出结果,也是得到了 4 个匹配结果:

>>> import re
>>> re.findall(r'a*', 'aaabb')
['aaa', '', '', '']

但这一次的结果匹配到了三次空字符串。为什么会匹配到空字符串呢?因为星号(*)代表 0 到多次,匹配 0 次就是空字符串。到这里,你可能会有疑问,如果这样,aaa 部分应该也有空字符串,为什么没匹配上呢?

这就引入了我们今天要讲的话题,贪婪与非贪婪模式。这两种模式都必须满足匹配次数的要求才能匹配上。贪婪模式,简单说就是尽可能进行最长匹配。非贪婪模式呢,则会尽可能进行最短匹配。正是这两种模式产生了不同的匹配结果。

贪婪、非贪婪与独占模式

贪婪匹配(Greedy)

首先,我们来看一下贪婪匹配。在正则中,表示次数的量词默认是贪婪的,在贪婪模式下,会尝试尽可能最大长度去匹配。

首先,我们来看一下在字符串 aaabb 中使用正则 a* 的匹配过程。

img

a* 在匹配开头的 a 时,会尝试尽量匹配更多的 a,直到第一个字母 b 不满足要求为止,匹配上三个 a,后面每次匹配时都得到了空字符串。

相信看到这里你也发现了,贪婪模式的特点就是尽可能进行最大长度匹配。所以要不要使用贪婪模式是根据需求场景来定的。如果我们想尽可能最短匹配呢?那就要用到非贪婪匹配模式了。

非贪婪匹配(Lazy)

那么如何将贪婪模式变成非贪婪模式呢?我们可以在量词后面加上英文的问号 (?),正则就变成了 a*?。此时的匹配结果如下:

img

>>> import re
>>> re.findall(r'a*', 'aaabb')  # 贪婪模式
['aaa', '', '', '']
>>> re.findall(r'a*?', 'aaabb') # 非贪婪模式
['', 'a', '', 'a', '', 'a', '', '', '']

这一次我们可以看到,这次匹配到的结果都是单个的 a,就连每个 a 左边的空字符串也匹配上了。

到这里你可能就明白了,非贪婪模式会尽可能短地去匹配,我把这两者之间的区别写到了下面这张图中。

img

为了让你加深理解,我们再来看一个示例,这一次让我们查找一下引号中的单词。

从下面这个示例中,我们可以很容易看出两者对比上的差异。左右的文本是一样的,其中有两对双引号。不同之处在于,左边的示例中,不加问号时正则是贪婪匹配,匹配上了从第一个引号到最后一个引号之间的所有内容;而右边的图是非贪婪匹配,找到了符合要求的结果。

img

独占模式(Possessive)

不管是贪婪模式,还是非贪婪模式,都需要发生回溯才能完成相应的功能。但是在一些场景下,我们不需要回溯,匹配不上返回失败就好了,因此正则中还有另外一种模式,独占模式,它类似贪婪匹配,但匹配过程不会发生回溯,因此在一些场合下性能会更好。

你可能会问,那什么是回溯呢?我们来看一些例子,例如下面的正则:

regex = “xy{1,3}z”

text = “xyyz”

在匹配时,y{1,3}会尽可能长地去匹配,当匹配完 xyy 后,由于 y 要尽可能匹配最长,即三个,但字符串中后面是个 z 就会导致匹配不上,这时候正则就会向前回溯,吐出当前字符 z,接着用正则中的 z 去匹配。

img

如果我们把这个正则改成非贪婪模式,如下:

regex = “xy{1,3}?z”

text = “xyyz”

由于 y{1,3}? 代表匹配 1 到 3 个 y,尽可能少地匹配。匹配上一个 y 之后,也就是在匹配上 text 中的 xy 后,正则会使用 z 和 text 中的 xy 后面的 y 比较,发现正则 z 和 y 不匹配,这时正则就会向前回溯,重新查看 y 匹配两个的情况,匹配上正则中的 xyy,然后再用 z 去匹配 text 中的 z,匹配成功。

img

了解了回溯,我们再看下独占模式。

独占模式和贪婪模式很像,独占模式会尽可能多地去匹配,如果匹配失败就结束,不会进行回溯,这样的话就比较节省时间。具体的方法就是在量词后面加上加号(+)。

regex = “xy{1,3}+yz”

text = “xyyz”

img

需要注意的是 Python 和 Go 的标准库目前都不支持独占模式,会报错,如下所示:

>>> import re
>>> re.findall(r'xy{1,3}+yz', 'xyyz')
error: multiple repeat at position 7

报错显示,加号(+)被认为是重复次数的元字符了。如果要测试这个功能,我们可以安装 PyPI 上的 regex 模块。

注意:需要先安装 regex 模块,pip install regex

>>> import regex
>>> regex.findall(r'xy{1,3}z', 'xyyz')  # 贪婪模式
['xyyz']
>>> regex.findall(r'xy{1,3}+z', 'xyyz') # 独占模式
['xyyz']
>>> regex.findall(r'xy{1,2}+yz', 'xyyz') # 独占模式
[]

你也可以使用 Java 或 Perl 等其它语言来测试独占模式,查阅相关文档,看一下你所用的语言对独占模式的支持程度。

如果你用 a{1,3}+ab 去匹配 aaab 字符串,a{1,3}+ 会把前面三个 a 都用掉,并且不会回溯,这样字符串中内容只剩下 b 了,导致正则中加号后面的 a 匹配不到符合要求的内容,匹配失败。如果是贪婪模式 a{1,3} 或非贪婪模式 a{1,3}? 都可以匹配上。

img

这里我简单总结一下,独占模式性能比较好,可以节约匹配的时间和 CPU 资源,但有些情况下并不能满足需求,要想使用这个模式还要看具体需求(比如我们接下来要讲的案例),另外还得看你当前使用的语言或库的支持程度。

正则回溯引发的血案

学习到了这里,你是不是觉得自己对贪婪模式、非贪婪模式,以及独占模式比较了解了呢?其实在使用过程中稍不留神,就容易出问题,在网上可以看到不少因为回溯引起的线上问题。

这里我们挑选一个比较出名的,是阿里技术微信公众号上的发文。Lazada 卖家中心店铺名检验规则比较复杂,名称中可以出现下面这些组合:

  1. 英文字母大小写;
  2. 数字;
  3. 越南文;
  4. 一些特殊字符,如“&”,“-”,“_”等。

负责开发的小伙伴在开发过程中使用了正则来实现店铺名称校验,如下所示:

^([A-Za-z0-9._()&'\- ]|[aAàÀảẢãÃáÁạẠăĂằẰẳẲẵẴắẮặẶâÂầẦẩẨẫẪấẤậẬbBcCdDđĐeEèÈẻẺẽẼéÉẹẸêÊềỀểỂễỄếẾệỆfFgGhHiIìÌỉỈĩĨíÍịỊjJkKlLmMnNoOòÒỏỎõÕóÓọỌôÔồỒổỔỗỖốỐộỘơƠờỜởỞỡỠớỚợỢpPqQrRsStTuUùÙủỦũŨúÚụỤưƯừỪửỬữỮứỨựỰvVwWxXyYỳỲỷỶỹỸýÝỵỴzZ])+$

这个正则比较长,但很好理解,中括号里面代表多选一,我们简化一下,就成下面这样:

^([符合要求的组成1]|[符合要求的组成2])+$ 

脱字符(^)代表以这个正则开头,美元符号($)代表以正则结尾,我们后面会专门进行讲解。这里可以先理解成整个店铺名称要能匹配上正则,即起到验证的作用。

你需要留意的是,正则中有个加号(+),表示前面的内容出现一到多次,进行贪婪匹配,这样会导致大量回溯,占用大量 CPU 资源,引发线上问题,我们只需要将贪婪模式改成独占模式就可以解决这个问题。

我之前说过,要根据具体情况来选择合适的模式,在这个例子中,匹配不上时证明店铺名不合法,不需要进行回溯,因此我们可以使用独占模式,但要注意并不是说所有的场合都可以用独占模式解决,我们要首先保证正则能满足功能需求。

仔细再看一下 这个正则,你会发现 “组成 1” 和 “组成 2” 部分中,A-Za-z 英文字母在两个集合里面重复出现了,这会导致回溯后的重复判断。这里要强调一下,并不是说有回溯就会导致问题,你应该尽量减少回溯后的计算量,这些在后面的原理讲解中我们会进一步学习。

另外,腾讯云技术社区也有类似的技术文章,你如果感兴趣,可以点击这里进行查看。

说到这里,你是不是想起了课程开篇里面提到的一句话:

如果你有一个问题,你想到可以用正则来解决,那么你有两个问题了。

Some people, when confronted with a problem, think “I know, I’ll use regular expressions.” Now they have two problems.

所以一个小小的正则,有些时候也可能会把 CPU 拖垮,这也提醒我们在写正则的时候,一定要思考下回溯问题,避免使用低效的正则,引发线上问题。

最后总结

最后我来给你总结一下:正则中量词默认是贪婪匹配,如果想要进行非贪婪匹配需要在量词后面加上问号。贪婪和非贪婪匹配都可能会进行回溯,独占模式也是进行贪婪匹配,但不进行回溯,因此在一些场景下,可以提高匹配的效率,具体能不能用独占模式需要看使用的编程语言的类库的支持情况,以及独占模式能不能满足需求。

img

课后思考

最后,我们来做一个小练习吧。

有一篇英文文章,里面有很多单词,单词和单词之间是用空格隔开的,在引号里面的一到多个单词表示特殊含义,即引号里面的多个单词要看成一个单词。现在你需要提取出文章中所有的单词。我们可以假设文章中除了引号没有其它的标点符号,有什么方法可以解决这个问题呢?如果用正则来解决,你能不能写出一个正则,提取出文章中所有的单词呢(不要求结果去重)?

we found “the little cat” is in the hat, we like “the little cat”

其中 the little cat 需要看成一个单词

最后修改日期: 2022年6月14日

留言

撰写回覆或留言

发布留言必须填写的电子邮件地址不会公开。