在经典汉诺塔问题中,有 3 根柱子及 N 个不同大小的穿孔圆盘,盘子可以滑入任意一根柱子。一开始,所有盘子自上而下按升序依次套在第一根柱子上(即每一个盘子只能放在更大的盘子上面)。移动圆盘时受到以下限制:
(1) 每次只能移动一个盘子;
(2) 盘子只能从柱子顶端滑出移到下一根柱子;
(3) 盘子只能叠在比它大的盘子上。
请编写程序,用栈将所有盘子从第一根柱子移到最后一根柱子。
你需要原地修改栈。
示例1:
输入:A = [2, 1, 0], B = [], C = []
输出:C = [2, 1, 0]
示例2:
输入:A = [1, 0], B = [], C = []
输出:C = [1, 0]
提示:
- A中盘子的数目不大于14个。
Python 解答:
class Solution:
def hanota(self, A: List[int], B: List[int], C: List[int]) -> None:
"""
Do not return anything, modify C in-place instead.
"""
def hano(A, B, C, n):
if n == 1:
return C.append(A.pop())
else:
hano(A, C, B, n-1)
hano(A, B, C, 1)
hano(B, A, C, n-1)
hano(A, B, C, len(A))
留言